Car Motion Analysis
A car moving in a straight line starts at \( x = 0 \) at \( t = 0 \). It passes:
- Point \( x = 29.0 \, \text{m} \) with speed \( 11.5 \, \text{m/s} \) at \( t = 3.00 \, \text{s} \)
- Point \( x = 375 \, \text{m} \) with speed \( 44.0 \, \text{m/s} \) at \( t = 20.0 \, \text{s} \)
Part A: Average Velocity
Find the average velocity between \( t = 3.00 \, \text{s} \) and \( t = 20.0 \, \text{s} \).
Given:
- \( x_1 = 29.0 \, \text{m} \) at \( t_1 = 3.00 \, \text{s} \)
- \( x_2 = 375 \, \text{m} \) at \( t_2 = 20.0 \, \text{s} \)
Calculation:
\[ \Delta x = 375 \, \text{m} - 29.0 \, \text{m} = 346 \, \text{m} \]
\[ \Delta t = 20.0 \, \text{s} - 3.00 \, \text{s} = 17.0 \, \text{s} \]
\[ \text{Average velocity} = \frac{346 \, \text{m}}{17.0 \, \text{s}} = 20.4 \, \text{m/s} \]
Final Answer:
✔ Correct
Part B: Average Acceleration
Find the average acceleration between \( t = 3.00 \, \text{s} \) and \( t = 20.0 \, \text{s} \).
Given:
- \( v_1 = 11.5 \, \text{m/s} \) at \( t_1 = 3.00 \, \text{s} \)
- \( v_2 = 44.0 \, \text{m/s} \) at \( t_2 = 20.0 \, \text{s} \)
Calculation:
\[ \Delta v = 44.0 \, \text{m/s} - 11.5 \, \text{m/s} = 32.5 \, \text{m/s} \]
\[ \Delta t = 20.0 \, \text{s} - 3.00 \, \text{s} = 17.0 \, \text{s} \]
\[ \text{Average acceleration} = \frac{32.5 \, \text{m/s}}{17.0 \, \text{s}} = 1.91 \, \text{m/s}^2 \]
Final Answer:
✔ Correct
0 Comments